Category Archives: Neurology (brain, spinal cord and nerves)

Anesthesia, with Animation

This video is available for licensing on our website. Click HERE!

Anesthesia is the use of drugs to prevent or reduce pain during a medical procedure. There are two major classes of drugs:
– Local anesthetics: these drugs block transmission of pain signals from peripheral nerve endings to the central nervous system. And
– General anesthetics: these act on the central nervous system itself to induce unconsciousness and total lack of sensation.
There are 3 major categories of anesthesia procedures:
Local anesthesia: a local anesthetic is administered directly to the site of procedure to numb a small area such as a tooth during a dental manipulation.
Regional anesthesia: a local anesthetic is injected near a cluster of nerve roots to prevent pain sensation from the area innervated by those nerves. Epidural given to women in labor is an example of this type.
General anesthesia: general anesthetics are used to suppress the entire central nervous system, resulting in loss of consciousness. A cocktail of several drugs are inhaled, given intravenously, or both. This type is used for major surgical procedures.
Apart from pain management, general anesthesia has some other goals: prevent formation of new memories, relax muscles, and suppress autonomic response to surgical injuries which could otherwise be extreme and harmful. General anesthetics are commonly used in combination with other drugs to achieve these end points.
An example of general anesthetic drug is Propofol. The exact mechanism of action of Propofol remains unclear, but it is thought to inhibit responsiveness of neurons via its binding to GABA receptor. GABA is a major inhibitory neurotransmitter in the central nervous system. Upon binding, it triggers GABA receptor – a ligand-gated chloride channel – to open and allow chloride ions flow into the neuron, making the cell hyperpolarized and less likely to fire. In other words, GABA makes the brain cells less responsive to new stimuli. Propofol binding has been proposed to potentiate GABA receptor, keeping the channel open for longer time and thus exaggerating this inhibition effect.
It is believed, however, that under anesthesia the brain does not simply shut down. Instead, the connections between different parts of the brain are lost. Using various brain imaging techniques it’s been shown that an anesthetized brain is still reactive to stimuli such as light and sounds, but somehow this sensory information is not processed resulting in no further consequences. A variety of anesthetic drugs are available, each of which may have different target molecules in the brain. However, if used at a high enough dosage, they can all cause unconsciousness. This is probably because consciousness is the result of a complex network of various brain functions, disruption of any of which could result in network dysfunction.
Emerging from unconscious state is not simply the result of drugs wearing off. As the connections between parts of the brain were lost, the brain has to somehow find the way to connect them back upon awakening. This usually happens in a certain order: the most basic and essential functions, such as respiratory and digestive reflexes, come back first, more complex brain functions return after. This may explains why older patients and people with pre-existing neurological conditions may take longer to recover all cognitive brain functions. The risk and extent of postoperative delirium – a state of mental confusion after surgery – are also higher in these patients.
The right dose of overall anesthesia is critical. It is usually calculated based on patient’s weight, age and medical history. Past or current uses of recreational drugs also have to be taken into account. Too much anesthesia results in a too deep state of unconsciousness, and consequently greater risks of postoperative complications and long-term cognitive dysfunction. On the other hand, a too low dose may cause the patient to wake up during the surgery, a phenomenon known as anesthesia awareness, which might be a traumatic experience to some patients.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Epilepsy, Types of Seizures, with Animation.

This video is available for licensing on Alila Medical Media website. Click HERE!

Epilepsy is a group of neurological diseases characterized by recurrent seizures. Seizures happen as a result of a sudden surge in the brain’s electrical activities. Depending on which part of the brain is affected, a seizure may manifest as loss of awareness, unusual behaviors or sensations, uncontrollable movements or loss of consciousness.

Mechanism

The brain is a complex network of billions of neurons. Neurons can be excitatory or inhibitory. Excitatory neurons stimulate others to fire action potentials and transmit electrical messages, while inhibitory neurons SUPPRESS this process, preventing EXCESSIVE firing. A balance between excitation and inhibition is essential for normal brain functions. In epilepsy, there is an UP-regulation of excitation and/or DOWN-regulation of inhibition, causing lots of neurons to fire SYNCHRONOUSLY at the same time.

Types of Seizures

If this abnormal electrical surge happens within a limited area of the brain, it causes PARTIAL or FOCAL seizures. If the entire brain is involved, GENERALIZED seizures will result. Partial seizures subdivide further to:

  • Simple partial: depending on the affected brain area, patients may have unusual feelings, strange sensations or uncontrollable jerky movements, but remain conscious and aware of the surroundings.
  • Complex partial seizure on the other hand involves a loss or changes in consciousness, awareness and responsiveness.

Generalized seizures subdivide further to:

  • Absence seizures: this type occurs most often in children and is characterized by a very brief loss of awareness, commonly manifested as a blank stare with or without subtle body movements such as eye blinking, lip smacking or chewing. People with absence seizures may not be aware that something is wrong for years. Kids who start having absence seizures in early years stand a good chance of outgrow them without treatment.
  • Tonic seizures are associated with stiffening of muscles and may cause the person to fall, often backwards.
  • Atonic seizures, also known as drop attacks, are characterized by a sudden loss of muscle tone, which may cause the person to collapse or drop down.
  • Clonic seizures are associated with rhythmic jerking muscle movements. Most commonly affected are the muscles of the neck, face, arms and legs. Clonic seizures are rare.
  • Myoclonic seizures are brief jerks or twitches of a muscle or a group of muscles. There can be one or many twitches occurring within a couple of seconds.
  • The most common and also most dramatic are tonic-clonic seizures, also known as convulsive seizures, which are combinations of muscle stiffening and jerking. This type is what most people relate to when they think of a seizure. It also involves sudden loss of consciousness and sometimes loss of bladder control. A tonic-clonic seizure that lasts longer than 5min requires immediate medical treatment.

Causes

Epilepsy may develop as a result of a brain injury, tumor, stroke, previous infection or a birth defect.

Generalized seizures that start in childhood are likely to involve genetic factors. Epilepsy due to a single gene mutation is rare. More often, an interaction of multiple genes and environmental factors is responsible. Hundreds genes have been implicated. Examples include genes encoding for GABA receptors – major components of the inhibitory circuit, and ion channels. Many genetic disorders that cause brain abnormalities or metabolic conditions have epilepsy as a primary symptom. The cause of epilepsy is unknown in about half of cases.

Diagnosis is based on observation of symptoms, medical history, and an electroencephalogram, or EEG, to look for abnormal brain waves. An EEG may also help in differentiating between partial and generalized seizures. Genetic testing maybe helpful when genetic factors are suspected.

Treatment

There is no cure for epilepsy but various treatments are available to control seizures.

  • Medication successfully controls seizures for about 70% of cases. Many anti-epileptic drugs are available which target sodium channels, GABA receptors, and other components involved in neuronal transmission. Different medicines help with different types of seizures. Patients may need to try several drugs to find the most suitable.
  • Dietary therapy: ketogenic diet has been shown to reduce or prevent seizures in many children whose seizures could not be controlled with medication. Ketogenic diet is a special high-fat, low-carbohydrate diet that must be prescribed and followed strictly. With this diet, the body uses fat as the major source of energy instead of carbohydrates. The reason why this helps control epilepsy is unclear.
  • Nerve stimulation therapies such as vagus nerve stimulation in which a device placed under the skin is programmed to stimulate the vagus nerve at a certain rate. The device acts as a pacemaker for the brain. The underlying mechanism is poorly understood but it has been shown to reduce seizures significantly.
  • Finally, a surgery may be performed to remove part of the brain that causes seizure. This is usually done when tests show that seizures are originated from a small area that does not have any vital function.
Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Baroreflex Regulation of Blood Pressure, with Animation.

Click HERE to license this video on Alila Medical media website!


Baroreflex, or baroreceptor reflex, is one of the mechanisms the body uses to maintain stable blood pressure levels or homeostasis. Baroreflex is a rapid negative feedback loop in which an elevated blood pressure causes heart rate and blood pressure to decrease. Reversely, a decrease in blood pressure leads to an increased heart rate, returning blood pressure to normal levels.

The reflex starts with specialized neurons called baroreceptors. These are stretch receptors located in the wall of the aortic arch and carotid sinus.  Increased blood pressure stretches the wall of the aorta and carotid arteries causing baroreceptors to fire action potentials at a higher than normal rate. These increased activities are sent via the vagus and glossopharyngeal nerves to the nucleus of the tractus solitarius – the NTS – in the brainstem.  In response to increased baroreceptor impulses, the NTS activates the parasympathetic system – the PSNS – and inhibits the sympathetic system – the SNS. 

As the PSNS and SNS have opposing effects on blood pressures, PSNS activation and SNS inhibition work together in the same direction to maximize blood pressure reduction. Parasympathetic stimulation decreases heart rate by releasing acetylcholine which acts on the pacemaker cells of the SA node. Inhibition of the sympathetic division decreases heart rate, stroke volume and at the same time causes vasodilation of blood vessels. Together, these events rapidly bring DOWN blood pressure levels back to normal.

When a person has a sudden drop in blood pressure, for example when standing up, the decreased blood pressure is sensed by baroreceptors as a decrease in tension.  Baroreceptors fire at a lower than normal rate and the information is again transmitted to the NTS.  The NTS reacts by inhibiting parasympathetic and activating sympathetic activities. The sympathetic system releases norepinephrine which acts on the SA node to increase heart rate; on cardiac myocytes to increase stroke volume and on smooth muscle cells of blood vessels to cause vasoconstriction. Together, these events rapidly bring UP blood pressure levels back to normal.

Baroreceptor reset : Baroreflex is a short-term response to sudden changes of blood pressure resulted from everyday activities and emotional states.  If hypertension or hypotension persists for a long period of time, the baroreceptors will reset to the “new normal” levels. In hypertensive patients for example, baroreflex mechanism is adjusted to a higher “normal” pressure and therefore MAINTAINS hypertension rather than suppresses it.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Embolización Endovascular para Aneurismas Cerebrales, con Animación.

¡Haz clic aquí para poder acceder a nuestro video y otras imágenes/videos similares en nuestra página web!

La embolización endovascular o espiral endovascular es una técnica mínimamente invasiva que se realiza para tratar los aneurismas cerebrales. El objetivo del tratamiento es bloquear el flujo de sangre hacia el aneurisma y por lo tanto reducir el riesgo de ruptura del aneurisma.

En este procedimiento, un catéter guiado por un cable es insertado a través de la arteria femoral en la ingle y es dirigido todo el camino hacia la arteria cerebral afectada. El cable guía es retirado. Un micro-catéter que lleva una espiral de platino suave se introduce dentro del catéter inicial y es conducido hasta la abertura del aneurisma. La espiral se despliega en el saco aneurismático. Una pequeña corriente eléctrica se pasa para separar la espiral del catéter. Puede tomar varias espirales para rellenar el aneurisma. Las espirales inducen la coagulación sanguínea dentro del aneurisma y lo aíslan de la arteria.

En algunos casos, cuando el cuello del aneurisma es muy amplio, una endoprótesis puede ser usada para mantener las espirales dentro del saco aneurismático. La embolización asistida con endoprótesis consiste en colocar permanentemente una endoprótesis en la arteria antes del bobinado. La endoprótesis actúa como un andamio dentro de la arteria para ayudar a mantener las espirales en su lugar.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Marijuana Effects on the Brain, the Goods and the Bads, with Animation Video.

This video can be licensed on Alila Medical Media website. Click here!

The Science of Marijuana

Marijuana, also known as cannabis, among other names, is a preparation of the Cannabis sativa plant – the hemp plant, intended for recreational and medicinal uses. Marijuana can be consumed by smoking, inhaling, or mixing with food.

The main psychoactive chemical in marijuana, responsible for most of the intoxicating effects sought by recreational users, is delta-9-tetrahydro-cannabinol, or THC. The Cannabis plant preparation also contains at least 65 other compounds that are chemically related to THC, called cannabinoids.

THC is chemically similar to a class of substances found naturally in our nervous system called endogenous cannabinoids, or endocannabinoids, of which anandamide is best known so far. The endocannabinoids are part of a newly discovered system named the Endocannabinoid system, or ECS.

How the ECS Works

A human brain contains billions of nerve cells, or neurons, which communicate via chemical messages, or neurotransmitters. When a neuron is sufficiently stimulated, a neurotransmitter is released into the synaptic cleft – a space between neurons. The neurotransmitter then binds to a receptor on a neighboring neuron, generating a signal in it, thereby transmitting the information to that neuron. Neuron communication is essential to all brain activities.

The ECS acts as a modulator of this neurotransmission. When the postsynaptic neuron is activated, endocannabinoids are produced, released, and travel back to the presynaptic neuron where they activate cannabinoid receptors. By doing so, they control what happens next when the presynaptic cell is again stimulated. The general effect is a DECREASE in the release of neurotransmitters such as GABA or glutamate. In other words, the ECS acts as a “brake”, SLOWING down neuronal activities, preventing neurons from excessive firing.

Some examples of ECS functions include:

 Pain modulation: cannabinoids SUPPRESS pain signal processing, producing pain relief effects.

 Stress and anxiety reduction: while response to stressful stimuli is necessary for an organism to react appropriately to a stressor, CHRONIC stress may be harmful. The ECS plays a role in the habituation of the body’s response to repeated exposure. It helps our body learn to restraint stress.

Mood regulation: the ECS promotes a “good feeling” by inducing dopamine release in the brain reward pathway. This explains the euphoria, or the “high”, experienced by marijuana users. THC mode of action is, however, different from other drugs: it induces dopamine release INDIRECTLY by removing inhibitory action of GABA on dopaminergic neurons.

The ECS is also involved in many other brain and bodily activities, including memory and learning, appetite and sleeping patterns, immune functions and fertility.

So how can marijuana be harmful if it does exactly what our body already does to itself?

The endocannabinoids are short-acting transmitter substances. They are synthesized on demand and their signaling is rapidly terminated by specific enzymes. The amount of endocannabinoid messengers is tightly regulated accordingly to the body’s needs. This regulation is essential for a modulator that acts to fine-tune brain activities.

Marijuana users consume a much higher amount of THC. THC is also much more stable than endocannabinoids and can persist in the body for a much longer period of time. THC overwhelms the endocannabinoid system, overriding normal brain functions. Because cannabinoid receptors are present in many parts of the brain and body, the effects of THC are wide-ranging. It can slow down a person’s reaction time, which could impair driving or athletic skills; disrupt short-term memory and higher thought processes, which could affect learning capabilities and judgment ability. Higher doses of THC may also lead to reverse effects. For example, while lower doses of cannabinoids seem to reduce stress, anxiety, and panic; higher doses may actually promote increased stressful feelings and fear. Consuming marijuana by smoking may also damage the lungs to a similar extent as smoking cigarettes.

Long – term Effects of THC

Substantial evidence from animal studies indicates that marijuana exposure can cause long-term adverse changes in the brain. Rats exposed to THC before birth, soon after birth, or during early life show significant difficulties with certain learning and memory tasks later in life. Long-term effects of marijuana in humans are still debatable mostly due to limitations of conducting research on human beings.

Medical Uses of Marijuana

While recreational use of marijuana is WITHOUT doubt harmful, the Cannabis plant may be a valuable source of medicines. Currently, the two main cannabinoids from the marijuana plant that are of medical interest are THC and cannabidiol, or CBD. These chemicals are used to increase appetite and reduce nausea in patients undergoing cancer chemotherapy. They may also be useful in reducing pain and inflammation, controlling epileptic seizures, and possibly even treating autoimmune diseases and cancers.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Ciática, con Animación.

¡Haz clic aquí para poder acceder a nuestro video y otras imágenes/videos similares en nuestra página web!


La ciática o neuralgia ciática es una condición común en la cual una de las raíces nerviosas del nervio ciático es comprimida resultando en dolor lumbar, glúteo y de piernas. El nervio ciático es un gran nervio proveniente de 5 raíces de los nervios espinales: L4, L5, S1, S2 y S3. Discurre desde la columna lumbar a través del glúteo bajando por la pierna hasta el pie por la parte posterior. Hay un nervio ciático en cada lado del cuerpo. Normalmente, solo un lado del cuerpo está afectado.
Un dolor de ciática típico es descrito como un fuerte dolor agudo en la zona lumbar, bajo el glúteo, muslo y pierna en un lado del cuerpo. También puede haber sensaciones de entumecimiento, ardor y hormigueo. El dolor puede empeorar sentándose, moviéndose, estornudando o tosiendo. Los patrones de dolor dependen de la raiz nerviosa que esté comprimida y siga la distribución del dermatoma.
La causa más común de ciática es un disco espinal herniado. El disco espinal es un cojín elástico suave que se encuentra entre las vértebras de la columna. Con la edad, los discos se vuelven rígidos y pueden agrietarse; el centro gelatinoso del disco puede protuir y volverse una hernia fuera de los límites normales del disco. Una hernia de disco presiona sobre la raíz nerviosa según sale de la columna.
En la mayoría de los casos esta condición se resuelve sola tras unas semanas de descanso y tratamiento conservador. Anelgésicos, fármacos anti-inflamatorios no esteroideos y relajantes musculares pueden ser prescritos. Ejercicios de estiramientos y terapia física pueden ser recomendados.
La cirugía puede ser necesitada si el dolor no cesa después de tres meses o más de tratamientos conservadores. El disco herniado puede ser extirpado en un procedimiento llamado discectomía. O, en otro procedimiento llamado laminectomía, parte del hueso de la vértebra puede ser cortado para crear espacio para el nervio.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Anatomía del Cerebro, con Animación.

¡Haz clic aquí para poder acceder a nuestro video y otras imágenes/videos similares en nuestra página web!


El encéfalo humano está dividido en tres partes principales:
– El cerebro – La mayor parte del encéfalo humano. El cerebro permite la percepción sensorial y controla las acciones motoras voluntarias.
– El cerebelo – El cerebelo yace inferior al cerebro en la parte posterior de la cabeza. En su mayoría está implicado en la coordinación del movimiento y en el ajuste fino de actividades motrices.
– El tallo cerebral, o tronco cerebral, está localizado en la base del cerebro y es continuo con el cordón espinal. Aloja todas las conexiones nerviosas entre las diferentes partes del sistema nervioso central. El tallo cerebral provee inervación a la cabeza y al cuello a través de los pares craneales. También contiene núcleos asociados a funciones corporales importantes como la regulación de la presión arterial, respiración, deglución, control de la vejiga, ciclo del sueño, entre otros.
En la parte superior del tronco cerebral, y a veces clasificado como parte de él, está el diencéfalo. Los principales componentes del diencéfalo son:
– El tálamo – El tálamo sirve como una puerta de entrada retransmitiendo señales sensoriales que se originan en todo el cuerpo hacia la corteza cerebral. También está involucrado en funciones emocionales y de la memoria.
– El hipotálamo – El hipotálamo es el principal centro de control del sistema nervioso autónomo y juega un papel esencial en la regulación homeostática. El hipotálamo conecta el sistema nervioso con el sistema endocrino a través de la glándula pituitaria. También contiene núcleos involucrados en la regulación de la temperatura corporal, la ingesta de comida y agua, ciclo del sueño y vigilia, memoria y comportamiento emocional.
El cerebro consiste de dos hemisferios cerebrales. El hemisferio izquierdo controla la mitad derecha del cuerpo. El hemisferio derecho controla la mitad izquierda del cuerpo. Los dos hemisferios están separados por un surco profundo llamado la fisura longitudinal. Cada hemisferio tiene un número de pliegues llamados giros, separados por surcos, o cisuras. Una referencia importante es el surco central.
El cerebro tiene cuatro lóbulos principales. El lóbulo frontal está situado anterior al surco central. Está asociado principalmente con las funciones motoras voluntarias, planeación, motivación, emoción y juicio social.
Posterior al surco central está el lóbulo parietal. Este lóbulo está relacionado principalmente con funciones sensoriales de la categoría somatosensorial como el tacto, estiramiento, movimiento, temperatura y dolor.
El lóbulo temporal está separado de los lóbulos frontal y parietal por el surco lateral. El lóbulo temporal está asociado con la audición, aprendizaje, memoria visual y lenguaje.
El lóbulo occipital está situado en la parte trasera del cerebro. Este es el centro de procesamiento visual del cerebro.
A primera vista, los dos hemisferios lucen idénticos, pero las investigaciones han encontrado un número de diferencias entre ellos. Esto se llama lateralización de la función cerebral. Por ejemplo, las áreas de formación del lenguaje – las áreas de Wernicke y Broca – usualmente están localizadas en el hemisferio izquierdo de las personas diestras. Lesiones en estas áreas resultan en déficits en la comprensión del lenguaje o trastornos del habla. Las áreas correspondientes en el hemisferio derecho son las responsables por el aspecto emocional del lenguaje. Lesiones en estas áreas no afectan la comprensión o formación del lenguaje, pero resultan en falta de emoción en el habla y en inhabilidad para entender emociones detrás del diálogo como el sarcasmo o un chiste.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Ciática, com Animação.

Este vídeo e outras imagens/vídeos relacionados (em alta definição) estão disponíveis para download sob licença aqui!


Ciática ou nevralgia ciática é uma condição comum na qual uma das raízes espinhais do nervo ciático é comprimida, resultando em dor na parte inferior das costas, nádegas, e pernas. O nervo ciático é um nervo espesso derivado de 5 raízes de nervo espinhal: L4, L5, S1, S2 e S3. Ele percorre da região lombar através das nádegas para as pernas e para os pés na parte posterior. Há um nervo ciático em cada lado do corpo. Normalmente, somente um lado do corpo é afetado.
Uma dor ciática comum é descrita como uma dor aguda na parte inferior das costas, na nádega, coxa e perna em um lado do corpo. Também pode haver dormência, queimação e formigamento. A dor pode piorar ao sentar, mover, espirrar ou tossir. Os padrões de dor dependem de qual raiz de nervo é comprimida, e segue a distribuição dos dermátomos.
A causa mais comum de ciática é uma hérnia de disco. O disco intervertebral é uma almofada elástica macia que fica entre as vértebras da coluna. Com a idade, os discos se tornam rígidos e podem rachar; o centro gelatinoso do disco pode sobressair para fora e virar uma hérnia fora dos limites normais do disco. A hérnia pressiona a raiz do nervo à medida que sai da coluna.
Na maioria dos casos a condição se resolve sozinha depois de algumas semanas de repouso e tratamento conservador. Analgésicos não esteroides anti-inflamatórios e relaxantes musculares podem ser prescritos. Exercícios de alongamento e fisioterapia podem ser recomendados.
Cirurgia pode ser necessária se a dor não acabar em 3 meses ou mais de tratamentos conservadores. A hérnia de disco pode ser removida em um procedimento chamado discectomia. Ou, em outro procedimento chamado laminotomia, parte do osso da vértebra pode ser cortado para dar espaço ao nervo.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Mecanismo da Dependência Química no Cérebro, com Animação.

Este vídeo e outras imagens/vídeos relacionados (em alta definição) estão disponíveis para download sob licença aqui!


A dependência química é uma desordem neurológica que afeta o sistema de recompensa no cérebro. Em uma pessoa saudável, o sistema de recompensa reforça comportamentos que são essenciais para a sobrevivência, como: comer, beber, comportamento sexual e interação social. Por exemplo, o sistema de recompensa garante que você busque comida quando está com fome, porque você sabe que depois de comer se sentirá bem. Em outras palavras, ele torna a atividade de comer agradável e memorável, para que você queira fazer isso sempre que sentir fome. Drogas de abuso se apropriam desse sistema, tornando as necessidades naturais da pessoa em necessidade de drogas.
O cérebro é composto por bilhões de neurônios, ou células nervosas, que se comunicam através de mensageiros químicos ou neurotransmissores. Quando um neurônio é estimulado o suficiente, um impulso elétrico, chamado de potencial de ação, é gerado e viaja ao longo do axônio para a terminação nervosa. Aqui, é desencadeada a liberação de um neurotransmissor na fenda sináptica – um espaço entre os neurônios. O neurotransmissor, em seguida, se liga no receptor do neurônio vizinho, gerando um sinal nele, transmitindo, assim, a informação para esse neurônio.
As principais vias de recompensa envolvem a transmissão do neurotransmissor DOPAMINA, a partir da área tegmental ventral, a ATV, do mesencéfalo para o sistema límbico e para o córtex frontal. Participar de atividades agradáveis gera potenciais de ação em neurônios produtores de dopamina no ATV. Isso faz com que haja a liberação de dopamina pelos neurônios na fenda sináptica. Em seguida, a dopamina se liga e estimula o receptor de dopamina no neurônio pós-sináptico. Acredita-se que essa estimulação pela dopamina produza sensações de prazer ou efeito de recompensa. Moléculas de dopamina são, em seguida, removidas da fenda sináptica e transportadas de volta para o neurônio transmissor por uma proteína especial, chamada de transportador de dopamina.
A maioria das drogas de abuso AUMENTAM a concentração de dopamina na via de recompensa. Algumas drogas, como o álcool, heroína e nicotina estimulam os neurônios produtores de dopamina indiretamente na ATV para que eles gerem mais potenciais de ação. A cocaína atua na terminação nervosa. Ela liga-se ao transportador de dopamina e bloqueia a recaptação de dopamina. Metanfetamina – um estimulante – atua de forma semelhante à cocaína no bloqueio da remoção de dopamina. Além disso, ela pode entrar no neurônio, nas vesículas que contêm dopamina, provocando a liberação de dopamina, mesmo na ausência de potenciais de ação.
Diferentes drogas agem de maneira diferente, mas o resultado comum é que a dopamina se acumula na sinapse em uma quantidade MUITO MAIOR do que a normal. Isso provoca uma estimulação contínua, talvez, a super estimulação dos neurônios pós-sinápticos seja responsável pela euforia prolongada e intensa, experimentada por usuários de drogas. Exposições repetidas a surtos de dopamina, causados pelas drogas, eventualmente DESSENSIBILIZAM o sistema de recompensa. O sistema deixa de responder a estímulos cotidianos; a única coisa que se torna gratificante é a droga. Dessa maneira, as drogas alteram as prioridades da vida da pessoa. Depois de algum tempo, até mesmo a droga perde a sua capacidade de recompensa e as doses necessárias para atingir o efeito de recompensa são mais elevadas, levando a overdose de drogas.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn

Sciatique, avec Animation.

Les vidéos sur cette page peuvent être téléchargés à l’achat d’ une licence sur le site Alila Medical Media . Cliquez ici!


Sciatique ou névralgie sciatique est une condition commune dans laquelle l’une des racines nerveuses du nerf sciatique est comprimée entraînant des douleurs en bas du dos, de la fesse et des jambes. Nerf sciatique est un nerf volumineux dérivé de 5 racines nerveuses: L4, L5, S1, S2 et S3. Il fonctionne à partir de la colonne lombaire, passe derrière l’articulation coxo-fémorale et se prolonge le long de la face postérieure de la jambe, jusqu’au bout du pied. Il y a un nerf sciatique de chaque côté du corps. Normalement, un seul côté du corps est affecté.
Une douleur sciatique typique est décrite comme une douleur aigue et lancinante en bas du dos, dans la fesse, la cuisse et la jambe d’un côté du corps. Il peut aussi y avoir des engourdissements, des brûlures et des picotements. La douleur peut empirer avec une position assise, en déplaçant, avec les éternuements ou la toux. Selon la position de la racine nerveuse comprimée, la douleur présente un trajet different qui suit la distribution de dermatome.
La cause la plus fréquente de sciatique est une hernie discale. Le disque vertébral est un coussin souple et élastique qui se trouve entre les vertèbres de la colonne vertébrale. Avec l’âge, les disques deviennent rigides et peuvent se fissurer; le noyau gélatineux du disque peut faire saillie et devient une hernie en dehors des limites normales du disque. Hernie discale appuie sur la racine nerveuse qui émerge de la vertèbre.

Dans la majorité des cas, la condition se résorbe d’elle-même après quelques semaines de repos et un traitement conservateur. Analgésiques, anti-inflammatoires non stéroïdiens et des relaxants musculaires peuvent être prescrits. Les exercices d’étirement et la thérapie physique peuvent être recommandés.
Une intervention chirurgicale peut être nécessaire si la douleur ne disparaît pas au bout de 3 mois ou plus de traitements conservateurs. La hernie discale peut être éliminée dans une procédure appelée discectomie. Ou, dans une autre procédure appelée laminectomie, une partie de l’os vertébral peut être retirée pour faire de la place pour le nerf.

Email this to someoneShare on FacebookTweet about this on TwitterShare on Google+Share on LinkedIn